Cognitive Science Knowledge Representation & Organisation

Erasmus Programme Professor Markos Dendrinos

DIKW scheme

- •Data
- •Information
- •Knowledge
- (Insight)
- •Wisdom

Data

- Simple unprocessed symbols
- Unstructured elements
- The terms of a meaningful sentence, such as named entities (subjects or objects), actions (verbs), properties (adjectives), spatial or temporal referents (adverbs)

Information

- Processed data
- Structured data in a spreadsheet or a database
- Answers to questions (what, who, when, where) according to Ackoff
- -Meaningful propositions (independently of their truth value)
- 'Meaningful' depends on the receptor (human or machine)

Knowledge

- Information written in a typical language (Propositional or Predicate Calculus)

- A system of propositions with an incorporated reasoning mechanism (given propositions and deduced propositions)

- Database relation scheme (tables related to other tables)
- Knowledge concerns the answer to 'how' questions and has to do with actions, aiming at the optimization of *efficiency*, according to Ackoff

- Justified information (*«episteme* is a justified true belief» / Platonic dialogue *Theaetetus*)

- -A meaningful proposition including its truth value
- *Insight* concerns the answer to 'why' questions.

Wisdom

- Long term view
- A view including aesthetic and ethical issues
- Evaluated understanding, according to Ackoff
- DIK(i) concern efficiency, while W concerns effectiveness, according to Ackoff
- Efficiency: how to do things in a right way, according to (supposedly) set right aims
- Effectiveness: how to do the right things by the reassessment of aims

Tacit and explicit knowledge

- Polanyi: Tacit knowledge is what we have learnt, which is more than what we can talk about
- Laudon: Explicit knowledge is the part of the tacit knowledge, which has been recorded

Propositional and Procedural knowledge

- Zeleny: Knowledge is a process, the knowhow

 There is no explicit knowledge The
 recorded knowledge becomes information
- Zins: Knowledge can be expressed propositionally – It is either tacit in the form of subjective beliefs or recorded objective propositions

Propositional Logic

- The items are propositions
- Unitary and binary operations on propositions
- Unitary operation: negation NOT ¬p
- Binary operations: AND $p\land q$, OR $p\lor q$, implication $p\rightarrow q$, equivalence $p\leftrightarrow q$
- Truth value assignment
- Truth table
- Proof process

Truth table of binary operations

I(p)	I(q)	I(¬p)	I(p∧q)	I(p∨q)	I(p→q)	I(p↔q)
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Truth table example

р	q	r	p∨q	~r	(p∨q) ∧ ~r
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

Logically equivalent propositions

 $p \rightarrow q \mid = \mid \neg p \lor q$ $\neg (p \lor q) \mid = \mid \neg p \land \neg q$ $\neg (p \land q) \mid = \mid \neg p \lor \neg q$ $p \land (q \lor r) \mid = \mid (p \land q) \lor (p \land r) \mid = \mid p \land q \lor p \land r$ $p \lor (q \land r) \mid = \mid (p \lor q) \land (p \lor r)$

Exercise - 1

- Prove through a truth table the following equivalence:
- $p \land (q \lor r) \models (p \land q) \lor (p \land r)$

Proof process

- Given propositions (considered as true)
- Deduction rules

Modus Ponens (if $p \rightarrow q$ and p then q) Modus Tollens (if $p \rightarrow q$ and $\neg q$ then $\neg p$)

Resolution Principle

- From the true propositions:
- p v r
- $q v \neg r$
- we deduce the truth of a new proposition: p v q

Proof process: An example

- p: I am exposed to covid
- q: I am vaccinated
- r: I get sick with covid
- s: I have strong immune system
- t: I am hospitalized

Proof process: An example (cont.)

Given propositions

 $p \land \neg q \rightarrow r$: 'if I am exposed to covid and not vaccinated then I get sick with covid' (pr.1) $r \land \neg s \rightarrow t$: 'if I get sick with covid and do not have strong immune system then I am hospitalized' (pr.2) p: 'I am exposed to covid' (pr.3) $\neg q$: 'I am not vaccinated' (pr.4)

 $\neg s$: 'I do not have strong immune system' (pr.5)

To be proved

t : 'I an hospitalized' (pr.6)

Proof through MP rule

(pr.1), (pr.3), (pr.4) and M.P. \Rightarrow r (pr.7)

(pr.2), (pr.7), (pr.5) and M.P. \Rightarrow t

Proof through Resolution principle

Step 1. We apply logical transformation to propositions, so that they include only OR - NOT.

Step 2. We include also the proposition to be proved but negated in the set of the given propositions

Step 3. We apply the Resolution principle until the deduction of a contradiction of the form (p $\land \neg p$)

Proof through Resolution principle (cont.)

```
Step 1.
(pr.1) = |\neg p \lor q \lor r (pr.1)
(pr.2) = |\neg r \lor s \lor t (pr.2)
p (pr.3)
¬q (pr.4)
¬s (pr.5)
\negt (pr.6) ... we have negated the proposition to
be proved
```

Proof through Resolution principle (cont.)

Step 2. (pr.1), (pr.4) $\Rightarrow \neg p \lor r$ (pr.7) (pr.2), (pr.5) $\Rightarrow \neg r \lor t$ (pr.8) (pr.7), (pr.8) $\Rightarrow \neg p \lor t$ (pr.9) (pr.9), (pr.6) $\Rightarrow \neg p$ (pr.10) (pr.3), (pr.10) $\Rightarrow 0$ (contradiction)

Proof through MT example

- If someone drinks hydrocyan then he dies
- We know that someone died. It is not valid to conclude that he drank hydrocyan
- We know that someone did not die (he is alive). It is valid to conclude that he did not drink hydrocyan.

Exercise - 2

p: 'a force is exerted on an object x' q: 'the object x accelerates' r: 'the velocity of the object x remains the same' s: 'the object x is at rest' Given propositions: $p \rightarrow q, q \rightarrow \neg r, s \rightarrow r, p$ The proposition to be proved: \neg s (that is 'the object is not at rest')

The proof must be presented (a) through deduction rules : Modus Ponens (M.P.), Modus Tollens (M.T.) and (b) through ResolutionPrinciple

Send an email with a doc file attached...